Surgical Navigation with Accuracy - Outer Reef Technologies

Surgical Navigation

Outer Reef Technologies

Surgical Navigation and Custom Applications

Examples of Our Surgical Navigation and Custom Applications

  • Optical Tracking
  • Inertial Measurement Unit (IMU) Based Tracking
  • Mechanical Tracking
  • Electromagnetic Tracking
  • Hybrid Tracking

Motion Capture in 3D

3D tracking technology provides that needed detailed view by digitizing, formatting, and enabling visualization measurement data. Positional movement of the point of interest (POI) can be tracked on the X, Y and Z axes of a 3D coordinate system. Rotation (roll, pitch and yaw) on these axes is calculated as orientation data. Movement in all directions is known, from any angle/perspective. This movement is reported in relation to a fixed object or reference frame; i.e., a ‘home’ location. Multiple objects—and their respective locations to each other—can be dynamically tracked at once.

To apply the GPS analogy to surgical navigation applications, patient imaging datasets represent the map. The target/treatment site is the destination. And a sensor embedded into an OEM surgical instrument such as a catheter, or a medical instrument fitted with trackers act as the vehicle.

3D tracking technology can enable the position and orientation of the catheter or instrument to be known in relation to its home/start location and destination as it’s navigated through the body. The catheter or instrument’s path (route) is visualized, planned, navigated, and presented in real-time to the clinician in the host OEM software interface.

3D tracking technology bridges the gap between static patient images and dynamic instrument movements; it brings the physical world into digital interfaces. The live stream of measurement data allows instruments to be shown at the right place, at the right time. As with GPS navigation, the value of 3D tracking technology is tied to its accuracy. It’s the difference between arriving exactly at your destination or being off by miles – or millimetres in surgical navigation applications.

Optical Tracking

Optical tracking systems are widely adopted in surgical navigation. An optical tracking system is designed based on the principle of stereo vision with high-precision and low cost. This system uses optical infrared LEDs that are installed on the surgical instrument as markers and a near-infrared filter is added in front of the stereo camera lens to eliminate the interference of ambient light. The algorithm based on the region growing method is designed and used for the marker’s pixel coordinates’ extraction. In this algorithm, the singular points are eliminated and the gray centroid method is applied to solve the pixel coordinate of the marker’s center. Then, the marker’s matching algorithm is adopted and three-dimensional coordinates’ reconstruction is applied to derive the coordinates of the surgical instrument tip in the world coordinate system. In the simulation, the stability, accuracy, rotation tests, and the tracking angle and area range were carried out for a typical surgical instrument and the miniature surgical instrument.

MU Tracking

Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long- lasting tracking of the user motion in situated environments.

Inertial units-based motion tracking have been used for navigation since decades ago. Initially developed for the attitude estimation of aerial vehicles. In recent years, IMUs are often used to track human motion thus becoming an enabling technology for several applications which include localization, human-robot interaction, rehabilitation and ergonomics.

Mechanical Tracking

An articulating arm is a type of CMM that uses rotary encoders on multiple rotation axes instead of linear scales to determine the position of the probe. These manual systems are not automated, but they are portable and can reach around or into objects in a way that cannot be accomplished with a conventional CMM to perform 3D inspections, tool certifications, CAD comparison, dimensional analysis, reverse engineering, and more. The movement of the articulating arm allows for ease of use, as well as a broader scope of measuring ability as it pivots at the wrist, elbow, shoulder, and base of the system. The encoders at the system's base triangulate the location of each joint to the probe tip in 3D space.

The ability to easily transport a highly accurate system such as an articulating arm allows surgeons to take measurements in difficult to reach scenarios, without having to adjust their workflow. Unlike fixed CMMs, the probe of an articulating arm is not restricted to travel within the extent of a confined measurement bed. The articulating arm can be fixated to the anatomy and/or surgical instruments to track real time position and orientation with data collection speeds of 2GB/sec and higher.

Hybrid Tracking

Motion Capture (mo-cap or mocap) can also be designed to use more than one of the above technologies in unsen. For example,improvements to articulating arms also include the integration of laser line scanners in combination with the traditional touch probe, thereby allowing the system to seamlessly scan across a diversity of surface materials, including those with high contrast, reflectivity, and geometric complexities. Optical systems can integrate IMU's to assist with line of sight and occlusion issues. Outer Reef Technologiescan design the optimal system for your application.

If you would like to know more about Surgical Navigation or have any project.


Product Examples

Robotics and Automation
Robotics and Automation

Our main focus and core competency is developing robotic platforms from the ground up. We are proud partners with ABB and handle all of their medical applications.

Motor Controllers
Motor Controllers

No matter your motor controller needs, we have the solution. Our team can develop hardware and firmware for your sensored or sensorless BLDC motor.

Surgical Navigation/Motion Capture
Surgical Navigation/Motion Capture

We develop high accuracy and precision navigation systems for the medical and gaming industries. Our systems incorporate IMU, optics, and/or mechanical tracking options.

Surgical Suites
Surgical Suites

After working decades with the top surgeons, we have brought many Class III medical devices and suites to the industry from concept through clinical trials and 510k submission.

Imaging and Optics
Imaging and Optics

Our team has extensive knowlege and experience developing and manufactiring optical devices ranging from LED fiber optics to rigid and flexible scopes.

High Precision Encoders
High Precision Encoders

As nearly all of our products require the highest level of accuracy and precision, in a small form factor, we typically design our own encoder solution to meet the clients requirements.

Virtual and Augmented Reality
Virtual and Augmented Reality

We have partnered with some of the top companies in the world to develop world class virtual and augmented reality devices. Our specialty is in sensor calibration, system integartion and verifcation.

Industrial Product and Packaging Design
Industrial Product and Packaging Design

Our design team utilizes SolidWorks to design and develop all of the products mechanical components. We utilize FEA and 3D printing to ensure our designs meet all requirements, prior to manufacturing.

Software and Application Development
Software and Application Development

These day there are apps integrated into nearly every product. We can support desktop, mobile and standalone apps, including apps which are required to integrate with the cloud and/or remote devices.


What is a Surgical Navigation System?

Surgical Navigation System is an integral component of computer-assisted surgery. It supports surgical methods that are based on the technology of digital imaging. It furnishes the surgeons with the ability to do pre-operative planning and also accurately navigate surgical instruments during the procedure. The Surgical Navigation System finds application in a wide range of fields nowadays. It helps in orthopedic surgery, maxillofacial surgery, visceral radiosurgery, and also in implant dentistry. 

How Does Surgical Navigation Work?

Let's See what our Clients Say

Our Clients are the Center of Our Universe

Proud Partners

  • Harris Web
  • Product Design Partner Magic Leap
  • Mircosoft
  • Outer Reef Technologies Partner Neocis
  • Medical Product Partner Orthosensor
  • Outer Reef Technologies Partner Steris
  • Stimpson
  • Outer Reef Technologies Partner Stryker
  • Medical Device Partner Vikon Surgical
  • Medical Device Partner Adex Technology
Medical Device Development Company

Contact Us Today @ 954-323-7850 or By Completing the Following Form

Thank you for you interest and we look forward to speaking with you!  Call us directly to speak with one of our engineers or feel free to email us and we will contact you within 24 hrs to discuss your project needs.

*Indicates a required field